Большие данные и доказательная медицина

Большие данные и доказательная медицина

В подавляющем большинстве клинических исследований, публикуемых в высокоцитируемых реферируемых журналах, отмечается крайний примитивизм. И это несмотря на чрезвычайную сложность данных реальных биомедицинских исследований — от тысяч до миллионов разнородных признаковых описаний, десятки-сотни тысяч пациентов.

Тем не менее, вместо комплексного, in-depth, интеллектуального анализа данных, публикуемые результаты исследований чрезвычайно загрублены: из всего массива закономерностей (сотни тысяч) выделяются, как правило,  1-2  (т. н. «первичная точка исследования», англ. primary outcome), которые почему-то «особо интересны» для исследователя (как правило, вследствие интересов коммерческого плана), и анализируется их статистическая значимость обычными методами математической статистики. Остальные корреляции просто игнорируются как «не имеющие интереса».

Важными научно-техническими причинами столь безответственного отношения к анализу интересных и сложных биомедицинских данных является (1) нежелание использовать методы комплексного анализа сложных разнородных данных, (2) густопсовое невежество относительно таких методов и (3) обсессивно-компульсивное использование уже имеющихся статистических эвристик, выбранных произвольно просто из соображений «удобства». В случае анализа сверхбольших данных, такого рода «подход» абсолютно неприемлем, особенно если идёт речь о т.н. «доказательной медицине».

Об авторе

administrator

Вы должны быть авторизованы, чтобы оставить комментарий.