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1. INTRODUCTION

After the determination of the nucleotide sequence
of the human genome in 2001–2002, the need to
develop efficient theoretical methods for solving the
annotation problem became apparent. Annotation of
genes is done through the annotation of proteins
encoded by those genes. Existing bioinformatics
methods are characterized by limited applicability,
because they cannot annotate more than half of the
proteins of the human genome [1].

Previously, the formalism to study the solvability
and locality of the task of the annotation of the
genome was proposed [2]. Protein P is determined as

an element of a set A* = , where A is an alphabet

of amino acids, A = {A, C, D, E, F, G, H, I, K, L, M,
N, P, R, S, T, V, W, Y}. Annotation t of protein P is

determined as an element of a set T* = , where

T = {t1, t2, …, tm} is a terminology dictionary reporting
so�called biological functions (biological roles) of pro�
teins. The set T* bijectively images itself in a set of

Boolean vectors of annotations , whose elements
{t1(P), t2(P), …, tj(P), …, tm(P)} are such that tj(P) = 1
if the term tj belongs to the annotation of the protein P
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and 0, if it does not. The solution of the annotation
problem is the correct algorithm, studied on a set of

precedents Pr ⊆ A* ×  and assigning the given protein
P in accordance with its annotation t = {t1, t2, …, tj, …},
tj ∈ T, t ⊂ T*. Let us note that the term tj generates a
partition of the set of the precedents into two nonin�

tersecting classes  and its inverse , such that  ∪

 = Pr,  ∩  = ∅.

In terms of the development of so�called formal�
ism, the annotation problem can be reduced without
loss of accuracy to the construction of m = |T | correct
local t�classifiers fj :

(1)

where Pr is a set of precedents; i is the position of the
amino acid sequence P; η(i, , U) is an operator for

selection of the subsequence of word U on a mask  =

{μ1, μ2, …, μm}, μi ∈ Z, and μ1 < μ2 < … < μm; M = { ,

, …, } is a system of masks; (M) =  is

a combined mask of system M; and tj(P) = (P ∈ ).

Let us denote the parameter m of the mask  = {μ1,

μ2, …, μm} as  and call it the dimension of the mask

;  = μm – μ1 + 1 is an extension of mask .
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The local tj�classifier fj exists if and only if for given Pr
and M the condition of local solvability is satisfied [2]:

(2)

where L = L(M) = max(– , 0) and R = R(M) =

max( , 0) define the definitional domain of

operator η. In the following discussion, we assume the
existence of restrictions on L(M) and R(M). Iirreduc�
ible is such a system of masks M that condition (2) is
violated for any M ' ⊂ M.

Let us consider the possibility of using (2) for the
experiments. We assume that Pr is consistent, i.e., Pr,

, (Pj, t j), i ≠ j: (Pi = Pj) ⇒ (ti = t j). In contrast

to the problem of recognition of a secondary structure
of proteins, where the determination of a consistent
set of precedents is a another research problem [3], the
consistency of Pr in the annotation problem is pro�
vided by the regularity of any Pr built on a sample of
proteins encoded by the same genome [2]. Therefore,
a irreducible system of masks, which provides local
solvability of the problem (or at least the boundary
parameters of irreducible systems of masks) would be,
above all, a nontrivial result of experiments for a given
term tj .

The practical applicability of the condition for the
solvability of the form (2) is substantially limited (a) by
the need to search all possible M, and (b) by significant
loss of information when removing masks from M. Let

 be a system of masks formed by all combinations
of m out of n possible positions in the combined mask

(i.e., m is the dimension of each mask , and n is the

length of the combined mask), so that  = . In
practically interesting cases m = 3–8 and n = 8–30, so

that an exhaustive search of all  subsets

 is not feasible. In addition, a removal of any mask
out of M entails the removal of all subsequences |A |m,
generated by that mask. When m = 3–8, |A | = 20,
|A |3 = 8000, and |A |8 = 25.6 × 109, so that the signifi�
cant loss of information on protein subsequences
when deleting even a single mask becomes obvious.

These problems can be solved in terms of the clas�
sification of attribute values [4, 5], developed in the
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scientific school of Academician Zhuravlev [6–8]. In
the transition from the attributes (masks of M or pairs
“a mask is a position sequence”) to the values of
attributes (subsequences formed by a given mask in a
certain position), the study of the solvability of the cri�
terion of monotony allows one to operate with indi�
vidual subsequences. The introduction of heuristic
evaluations of informative subsequences [5] can
reduce an exhaustive search for the solution and makes
the practical implementation of algorithms for testing
the solvability possible.

It follows from condition (2), which includes oper�
ator η(i, , U) for choosing a subsequence, that a par�
ticular feature of sequence U can be considered as
mask , as well as a complex of the mask and the posi�
tion of the sequence, (i, ). Before the further devel�
opment of formalism, it is necessary to choose the
most appropriate method for the generation of
attributes in terms of data available in the area of con�
cern. For this, let us we consider the specific subse�
quences of amino acids known in biology as “func�
tional sites” or “amino acid motifs,” which corre�
spond to specific biological roles of proteins.

2. BIOLOGICAL ROLES 
OF PROTEINS, FUNCTIONAL SITES, 

AND AMINO ACID MOTIFS

In this paper, the biological roles of proteins are
described using terminology dictionary T, in which
capacity, for example, the system of standardized ter�
minology GO (Gene Ontology) [9] can be used. To

m̂

m̂
m̂

Table 1.  Terms of the GO dictionary, most common in the
annotation of human genome (total number of genes
>25000, number of annotated genes is 14000)

Term GO ID
Number

of genes/pro�
teins

t1—“Nucleus” 5634 2890

t2—“Membrane” 16020 2450

t3—“Integral membrane pro�
tein”

16021 2400

t4—“Protein—protein interac�
tions”

5515 2390

t5—“Binding of metal ions” 46872 1620

t6—“Zinc binding” 8270 1580

t7—“Transcription regulation” 6355 1430

t8—“Binding of nucleotides” 166 1260

t9—“Receptor activity” 4872 1170

t10—“ATP binding” 5524 1050
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date, the DB GO (www.geneontology.org) has more
than 23 100 terms; the most common terms are listed
in Table 1.

The particular biological role or “biological func�
tion” of protein P is realized by a complex of specific
amino acid residues in the protein sequence. These
residues form “sites,” which are certain areas of a
three�dimensional structure of the protein, which
ensure the fulfillment of that biological role of the pro�
tein.

Within the developed formalism, such a site,
uniquely corresponding to a particular biological role
of the protein described by term tj, is a subsequence of
protein P selected in the ith position P on a mask ,
so that  is the dimension of the site Sj(P) = η(i, ,
P),  is the extension of the site, and the ratio /|P |
is the relative extension of the site, which reflects the
degree of localization of the site in protein P. The bio�
logical function of the protein is localized, if the max�
imum extension of the appropriate site is much
smaller than the amino acid sequence of the protein
[2], so that the degree of localization of the biological
function t in protein P is loc(t, P) = 1 – max /|P |.

To describe the sites of such a specific type, the so�
called amino acid motifs are used in biology: they are
specific (usually relatively short: 8–30 letters)
sequences, “patterns” of amino acids. For example,
one of the motifs, corresponding with the term t8
“nucleotide binding” (GO code 166) is [AG]�X(4)�
GK�[ST], where “[AG]” means “A or G,” X is any let�
ter of the alphabet A, and X(4) is a sequence of four let�
ters. The database PROSITE (PROtein SITEs) [10],
compiled by experts on the basis of biochemistry and
molecular biology data, contains more than 1800 such
motifs of amino acid sequences.

We note that each term tj corresponds to several dif�
ferent amino acid motifs. Thus, term t8 corresponds to

m̂
m̂ m̂

m̂[ ] m̂[ ]

m̂[ ]

not only the above�mentioned motif [AG]�X(4)�G�
K�[ST] (ID PS00017 in the PROSITE database) but
also the motifs [LIVM]�X�[LIVM](2)�[HEA]�[TI]�
X�D�X�H�[GSA]�X�[LIVMF] (PS00785), [FYPH]�
X(4)�[LIVM]�G�N�H�E�F�[DN] (PS00786] and
others. The terms in Table 1 correspond to 198 amino
acid motifs in the PROSITE database. These motifs
differ by the extension and the degree of the localiza�
tion of the generated sites, as well as by the location in
the amino acid sequences. In Fig. 1, the data on the
extension of the amino acid motifs corresponding to
the terms in Table 1 is summarized; the data on the rel�
ative positions of these motifs in different proteins of
the human genome can be seen in Fig. 2.

The data summarized in Fig. 1 is a good illustration
of the desirability of introducing the hypothesis of
locality. Thus, the amino acid motifs for the terms t4,
t5, t6, t8, and t10 take, as a rule, 3–5% of the length of
the sequence in all investigated sequences of proteins,
and amino acid motifs for t1, t2, t3, t7, and t9 take 3–8%.
In this case, the length of all investigated motifs is
rarely more than 10% of the length of the protein
sequence.

The data in Fig. 2 allow us to conclude that the dis�
tribution of amino acid motifs along the amino acid
sequences is in some way irregular. For example, the
motifs corresponding to t1 and t10, occur mainly at the
beginning of the amino acid sequences (the first 20–
30% of the positions of the sequence, or loci 0.2–0.3
in Fig. 2); t3 is mainly in the centers of the sequences
(loci 0.3–0.5); t9 is at the ends of sequences (loci 0.7–
0.8); and motifs t7 meet with similar frequencies (on
the average, 0.1) in different parts of the chain. It is
important to note that despite the irregular distribu�
tion along the sequence, the considered amino acid
motifs are found in almost all parts of the sequences,
although with varying frequency. Similar results were
obtained for other motifs collected in the PROSITE
database.
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Fig. 1. Frequency of values of the relative extension of sites formed by amino acid motifs for various terms of the GO dictionary
(DB PROSITE data).
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Thus, the analysis of the known amino acid motifs
in biology points to the practicability of considering
the two hypotheses in the search for the solution to the
annotation problem: (A) the hypothesis of locality
(the biological function described by the term tj is
realized by a relatively short section of the
sequence) and (B) the hypothesis of positional
independence (the motif corresponding to tj can be
found in any part of the sequence. These two
hypotheses are the basis for further progress of the
developed formalism.

3. THE SOLVABILITY CONDITION 
ON THE SET OF ELEMENTARY MOTIFS

From the available data on amino acid motifs, it
follows that each term tj ∈ T corresponds, in general,
to several motifs of various dimensions and extensions.
Previously introduced concepts for describing the
annotation problem in a local form (a mask, an η
operator, a mask system, a combined mask of the mask
system) allow us to represent an arbitrary site Sj(P) by
the complex of the sets and the subsequences of
smaller dimension and extension and then reformu�
late the condition of local solvability in terms of some
subsequences of symbols, which are available or miss�
ing in protein P.

Let us call element of K = {( , V)|  ∈ M,  =

} as the elementary motif κ. In terms of the hypoth�
esis about the positional independence of the motifs,

we say that an elementary motif κ = ( , V) is in the
sequence of P(κ ⊂ P), if the following condition is exe�
cuted:

(3)

For an arbitrary pair of proteins, P1 and P2, motif κ
will be called distinguishing if κ is presented in one of
the objects and not the second one. If distinguishing

motif κ ⊂ P ∈ , call it permissive; motif κ ⊂ P ∈ 
is called prohibitive. Let K(Pr, M) be the set of all
motifs that are present in sequences from Pr in the
given mask system M.

Theorem 1. The existence of a distinguishing motif
for any pair of precedents consistent with Pr is a neces�
sary and sufficient condition for local solvability of the
annotation problem.
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Proof. Applying the logical operator NOT, we get
the reverse form of the assertion (2) for a given tj:

(2.1)

The term tj ∈ T leads to the partition of Pr into classes

 and . We proceed from tj(P1), tj(P2) to an expres�
sion of belonging to classes:

(2.2)

Replacing the mask and the operators of choice of the
subsequence by the motifs considering the positional
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Fig. 2. Relative location of amino acid motifs for various
terms of the GO dictionary.
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independence (3) and going from a set of masks M to
a set of motifs K(Pr, M), we get the solvability condition
on the set of motifs:

(2.3)

Condition (2.3) proves what is required. The suffi�
ciency is proved by contradiction. Assume that (2.3) is
not executed, and for a certain pair of precedents
involving the proteins P1 and P2, a distinguishing motif
with P1 and P2 belonging to different classes does not
exist. Then, K(Pr, M) does not have such a mask and a
subword that satisfy (2.1), which could satisfy the solv�
ability condition (2). The theorem is proved.

Corollary 1. Solvability can be guaranteed by both
permissive and prohibitive motifs. Condition (2.3) can
be represented as a conjunction of conditions (2.3.1)
and (2.3.2):

(2.3.1)

(2.3.2)

Obviously, (2.3.1) corresponds to the permissive

motifs (i.e., motifs, belonging to the objects of class 
motifs), and (2.3.2) corresponds to prohibitive motifs

(i.e., motifs belonging to the inversion of class 
motifs).

Corollary 2. Motifs κ1 = ( , V1) and κ2 = ( , V2)
are called shift�equivalent if they are formed by shift�

equivalent masks (  = { , , …, },  = {  +

δ,  + δ, …,  + δ}, δ ∈ Z) and V1 = V2. Let  be

the set of shift�equivalent motifs for the given  and V.

Then, every motif of  ensures the execution of con�

dition (2.3) if at least one motif of  is a distinguish�
ing motif. The proof is obvious from the definition of
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the entry of motif (3) and the criterion for local solv�
ability in the form (2.3).

Note. Execution of condition (2.3) implies its
validity for every pair of objects of the set Pr2. In exper�
imental testing the solvability of some Pr, M, and K ⊂
K(Pr, M), condition (2.3) can only be executed on
some pr(K, Pr) ⊂ Pr2. It is natural to call the ratio r(K,
Pr) = |pr(K, Pr)|/|Pr2 | the satisfiability of the condition
for solvability when using the given Pr and Κ.

Theorem 1 and its corollaries serve as the basis for
the practical application of the developed formalism,
whose meaning is to establish a minimum set of motifs
that provide solvability.

In [2, 3], the monotony of the condition for the
solvability on the mask systems was analyzed, the phe�
nomenon of irreducible mask systems was studied, and
a search algorithm of irredundant mask systems was
formulated. Accordingly, for the search for minimal
sets of motifs satisfying (2.3), one should consider the
boundaries of the monotony of the condition for solv�
ability (2.3) by varying K.

K variation is reduced to adding or removing indi�
vidual motifs. On the one hand, the addition of the
motifs to K (of course, with constant L(M) and R(M),
see (2)) does not violate the validity of (2.3), i.e., con�
dition (2.3) is monotone on K when K ⊆ K'. On the other
hand, the set of motifs K for which the condition (2.3)
is executed may be redundant in the sense that solv�
ability will remain when removing some motifs. If
condition (2.3) is executed for K, but not satisfied for
any K ' ⊂ K, then such a set of motifs is called irreduc�
ible.

Generally speaking, the definition of the irreduc�
ible sets of motifs K of an irredundant system of masks
M can be solved by an exhaustive search. However, in

the case of mask systems of type , searching all the

subsets of  motifs is not feasible. Reducing the
exhaustive search is possible through the classification
of the attribute values and accentuation in the set of all
values of all studied attributes of the subset of the
“most informative.” Then, in the study of the monot�
ony of condition (2.3), one should leave the “highly
informative” motifs and delete the motifs with “fairly
low” informativeness.

4. HEURISTIC EVALUATION 
OF THE INFORMATIVENESS

OF ELEMENTARY MOTIFS

The evaluation of the informativeness of the motifs D:
Κ  R+ can be administered in various ways so that
greater informativeness of a motif will correspond to
larger values of D. A rigorous set�theoretic study of the
form of the appropriate functional is beyond the scope
of this article and is another area for investigation.
Here, we introduce some heuristic evaluations of

Mn
m

Cn
m A m
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motif informativeness based on the occurrence rate of
the elementary motifs.

Let K(Pr, M) be a set of motifs for given Pr and M.
As before, we consider the single term tj and the parti�

tion generated by it of Pr into  and , and n1 = 

and n2 = . Each motif κα ∈ K(Pr, M) is a part of the

 precedents Pr,  =  + , so that the fre�
quency of occurrence of the motif in the objects of class

 is defined as  =  and motif κα is associated

with vector ( , ).

Let the frequency of objects (precedents) in the

class  be . We assume that the informativeness of

motif κα is proportional to : i.e., the more 

differs from , the more informative the motif. Then,

it is natural to define Dα, the evaluation of informa�

tiveness of the αth motif on class , as some V�shaped

function with a single minimum when  =  and

such that Dα = 1 when  = 1.0 and  = 0. This
requirement is satisfied, for example, by a piecewise
linear function (Fig. 3).

A V�shaped piecewise linear function of the form
Dα is found by the equation y = kx + b for the two sets

of dots {(0, 1), ( , 0)} and {( , 0), (1, 1)}, so that

(4)

The Dα value indicates how often the αth motif

could be found in class  or, in other words, reflects
the distribution of entries of the motif in objects of dif�
ferent classes. For example, Dα = 1.0 corresponds to
the fact that the motif occurs only among the objects

of class  or, conversely, only among objects of . An
important option for evaluation of Dα is the assess�
ment of D 'α:

(4')

When using Dα, both the permissive and prohibitive
motifs could be more informative, while using D 'α,
only the permissive motifs will be among the more
informative, i.e., motifs ensuring the solvability by
condition (2.3.1). We note that in the annotation
problem, in contrast to the problem of recognition of
secondary structure [3], the use of prohibitive motifs is
inappropriate in terms of the locality of the problem.
In fact, the presence of a prohibitive motif at one locus
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does not prohibit, literally, the presence of a permissive
motif in another locus of the chain.

In addition to comparative evaluations of the distri�
bution of the objects among the classes, the frequency
of its occurrence among the objects affects the infor�
mativeness of the motif. In other words, for fixed Dα,

we assume a motif with large  as being more infor�
mative. Using this notation, we can offer at least three
ways to evaluate the total informativeness of the αth
motif:

• D1(α) = Dα,

• D2(α) = ,

• (α) = 

• D(α, D0) = 

In addition to the heuristic evaluations of the motif
informativeness stated above, others also may be
offered. It is intuitively clear that an informative motif

must devote many of objects of class  and suffi�

ciently small objects of class  [11]. In [12], more
than a dozen different heuristic evaluations of infor�
mativeness are given, representing all sorts of heuristic
functions from a pair of values similar to n1 and n2,
such as entropy criterion of informational gain, well�
known statistical criteria of xi�square, and Fisher
et al.’s exact [11, 12]. As a part of the problem, heuris�
tic evaluations of the informativeness of motifs are
necessary for finding irreducible sets of motifs that
take into consideration the criterion of solvability of
the problem.

5. INFORMATIVENESS OF MOTIFS
AND SOLVABILITY CONDITION

Let D be a heuristic evaluation of motif informa�
tiveness, D: K  R+. The function D assigns to each
set of motifs K(Pr, M) its informativeness of a particu�
lar subset R+. The order relation on R+ induces a linear
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Fig. 3. Piecewise�linear V�shaped function Dα for evalua�
tion of the informativeness of the αth motif.
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order on the set of motifs K. Having the ordered set of
motifs, the selection of the most informative may be
implemented as (1) removal from K of the least infor�
mative motifs, as long as solvability remains or (2) the
selection of the most informative motifs, as long as the
solvability on all pairs of objects is not reached.

Let us consider the second search option of irre�
dundant K—the selection of the most informative
motifs. The introduction of a linear order on the set of
motifs allows using data about the informativeness of
motifs for testing solvability conditions (2.3). The
principle of the selection of motifs is that for every pair
of objects from Pr a distinguishing motif with the high�
est information content is found. The selected motifs
in such a way form a set of distinguishing motifs K0 with
the highest informativeness such that K0 ⊆ Κ(Pr, M).
Let us formulate the conditions when K0 is irreducible.

Theorem 2. A set K0 is irreducible if and only if for
every motif from K0 to Pr there is at least one pair of
objects for which this motif is the only different one.

Proof. First we prove sufficiency. Any two motifs
κα = ( , Vα) and κβ = ( , Vβ) can be arranged in
accordance with the values of D(α) and D(β). We enu�
merate all the elements K = K(Pr, M), so that the lin�
ear order of motifs correspond to decreasing values of
D: κ1, κ2, κ3, …, κα, …, , D(κα) ≥ D( ).

On the initial set of motifs Κ, let the condition of
solvability be executed (2.3). Let us define the func�
tion Kf(i, j), which locates the single motif with the
highest D (and, hence, with a minimum number of
motif α), which will help to distinguish the ith and jth
objects (precedents):

(5)

Then, a minimal set of motifs K0 on which the solv�
ability remains, K0 ⊆ K(Pr, M), is determined by the
characteristic function T(α):

(6)

For each pair of ith and jth precedents Kf(i, j) is the
most informative distinguishing motif for the corre�
sponding sequences. For all these motifs T(α) = 1, i.e.,
these motifs form K0. After computing T(α) for all
pairs of precedents, each ith precedent corresponds to

 distinguishing motifs from K0,  =

. Objects with  = 0 are called zero�

objects and objects with  = 1 are called unit�
objects. Obviously, the distinguishing motif is single

m̂α m̂β

κ K κα 1+

Kf i j,( ) α: κα Pi⊂( )
1… K
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0 otherwise.⎩
⎪
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=

ni
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rm

T α( ) = 1{ }i ni
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ni
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only in pairs of objects composed of a zero�object and

a unit�object (i.e.,  +  = 1).

Now let us imagine that from K0, the αth motif

found in the  objects is removed. If  > 1 for all

 objects, than  +  a fortiori is more than 1
and the removal of the motif may or may not lead to

the loss of solvability. When  = 1 for one of the 
objects, then, when comparing this object with the
arbitrary zero�object of another class of the αth object
will be the only motif in this pair of objects and the
removal of this motif will inevitably lead to the loss of
solvability. K0 cannot be irreducible when the last
statement is true for all motifs.

The requirement is proved by contradiction. Let K0

be a irreducible set of motifs. The condition for irre�
ducibleness of K0 is the loss of solvability when remov�
ing the arbitrary motif. In accordance with (2.3), solv�
ability is lost when for objects of different classes there

are no distinguishing motifs, i.e.,  +  = 0.

Assume that an arbitrary αth motif of irreducible K0

occurs in  objects and for all of these objects  > 1
(in other words, for the αth motif there is no pair of
objects for which this motif is the only distinguishing

motif). Then, when deleting the αth motif  +  > 0;
i.e., there is a possibility of arbitrary motif removal
from K0 without losing solvability and, consequently,
K0 is not irreducible. The theorem is proved.

Corollary 3. The set of K0 calculated by (6) is irre�
ducible. K0 is irreducible when it is corresponds with
each motif with at least one pair of objects with a single
distinguishing motif. In the construction of K0, func�
tion Kf(i, j) (5) selects the only distinguishing motif for
any pair of objects.

Corollary 4. Finding all zero�objects in one class is a
necessary condition for solvability. Let us assume that
all zero�objects, except for the ith objects, are concen�

trated in class , and the ith object is the only zero�

object in class . Then, when comparing the ith zero�

object with any zero�object from  a loss of solvability
will occur.

Corollary 5. Finding all zero�objects in one class is a
necessary condition for K0 to be irreducible. K0’s irre�
ducibleness implies solvability of the problem. When
violating a necessary condition for solvability (Cor�
ollary 4) the deadlockness is not feasible.

Note. Irreducible sets of motifs, obtained on differ�
ent Pr, may significantly differ from each other. Let us

divide  into n nonintersecting pairs of sets of prece�
dents Pri. In a fixed system of masks M, for each Pri,

Ki(Pri, M) is calculated, and then, (Pri, M) is con�
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structed. Let K = K( , M) = (Pri, M). Then, let

us call the ratio of the number of sets (Pri, M) in
which this motif came as a distinguishing motifs to the
sets of precedents Pri as the fullness of the αth motif,
i.e.,

(7)

Value zα = 1 indicates the entry of the most informative

distinguishing motif κα into (Pri, M), built on an
arbitrary Pri; zα = 0 corresponds to the fact that the αth
motif is not the most informative distinguishing motif
in any of the Pri. It is clear that the motifs with the
maximum fullness (zα = 1) are of particular interest for
the selection of the most informative attributes and
construction of the correct recognition algorithms.

Theorem 2 and its corollaries allow us to calculate
the irreducible sets of the most informative motifs. The
core of the developed formalism is based on two fun�
damental assumptions, whose analysis is a promising
direction for further research.

1. Solvability on the set of motifs is defined through
the introduction of heuristic evaluations of the infor�
mativeness of motifs. The conduction of a rigorous
theoretic�set justification of the possible forms of the
corresponding functional, generating D�function is
necessary.

2. Condition D(κα) ≥ D( ) in the process of
calculating Kf(i, j) (expression 5) corresponds to a cer�
tain arbitrariness in the selection of the motif when
D(κα) = D( ) = D( ) = …, etc. Arbitrariness
in the selection of the motif raises the question about
the problems of retraining recognition algorithms,
which will be built using the irreducible K0, built on
different samples of objects. Variation of the occur�
rence of motifs in different samples of objects also
makes it necessary to introduce a combinatorial eval�
uation of the values of D.

6. EXPERIMENTAL TESTING 
OF A CRITERION FOR LOCAL SOLVABILITY

Condition (2.3) and Theorem 2 make it possible to
conduct experiments on the evaluation of the solv�
ability of the local t�classifiers. All numerical exper�
iments whose results are described in this paper
were based on the stable version of the annotation of
the human genome (NCBI genome build 36,
www.ncbi.nlm.nih.gov). This version of the annota�
tion of the genome consists of almost 14 000 of the

c
tj Ki

i 1=

n

∪

Ki
0
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Ki

0 κα, Ki
0∈{ }
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Ki
0

κα 1+
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29 875 proteins with annotations (i.e., attributed to
certain terms of Gene Ontology).

Since the calculation of the characteristic function
on expression (6), N2, is a difficult task, experiments
were performed only for the two most common terms:

t1 (nucleus,  = 2890,  = 26985) and t2 (mem�

brane,  = 2450). For each tj, test samples Pr were
formed for a calculation of characteristic functions of
T(α) by random selection of objects without replace�

ment. Samples of 2, 5, and 10% of the objects from 

and an equal number of objects from  were exam�
ined, by 10 samples for each of the three values given
above. Calculations were also carried out for samples

which included 20% of , by 5 samples for t1 and t2.
Further, samples of a certain size are denoted as 10%
Pr, 20% Pr, etc. The study of larger samples of the pre�
cedents at the present time are not possible due to sig�
nificant computational difficulties (for example, the
experiments described in this paper took 12 weeks on
a 2�nuclear PC 2.7 GHz).

Each of the mask systems used had a fixed dimen�
sion of all masks. The solvability of nested mask sys�

tems, which are elements of form  ⊂  ⊂ … ⊂

 ⊂ , was tested. The maximum extension of
masks in all systems was 8 positions. The studied mask
systems were based on the mask system with the

dimension of all masks equal to 2 (system ,  =

 = 28) and dimension 3 ( ,  =  = 56). By
Theorem 1, Corollary 2, the removal of the shift�
equivalent masks will not lead to the loss of solvability;
therefore, for the calculation of T(α) the mask systems

,  = 11 and , and  = 25 were used,
obtained by reduction of the shift�equivalent mask

systems  and , respectively.

The feasibility of using heuristic evaluations of the
informativeness of the motifs D1(α), D2(α), (α), and
D(α, D0) was investigated. Preliminary experiments

showed that the evaluation of (α) leads to irreduc�
ible sets of motifs of the smallest dimension.

Calculations T(α) showed that current formalism
allows performing an effective reduction of the set of
motifs K(Pr, M) to irreducible K0 without the loss of
solvability. For example, each of the sets of the motifs

K(Pr, ), built for the 10% Pr sample, contained
176000–177000 motifs. The number of selected

motifs, i.e., , was 190–250, which is less than

0.2% of the original K(Pr, ).
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The logarithmic nature of the relationship
between the number of selected motifs from |Pr |
(Fig. 4) suggests that the efficiency of reduction of
the set of motifs will remain high at larger size sam�
ples of the precedents. As expected, the reasons for
K0 (i.e., motifs with T(α = 1) are most common
among motifs with high informativeness (i.e., the
lowest α, Fig. 5).

Let us consider the dependence of the number of
pairs of objects on which the solvability is reached
(maximum, |Pr2 |) on the number of motifs with the
highest informativeness. Since the number of motifs in
K0 is dependent on the number of objects (Fig. 4), we

use percentages to compare the results obtained for the
Pr of different sizes (Fig. 6).

The results presented in Fig. 6, indicate the exist�
ence of a core in a set of irreducible motifs. Motifs
belonging to such a core provide solvability in most
pairs of objects. For example, in the irreducible K0,

built on the mask system , only 20% of the most

informative motifs K0 ensure the solvability of more
than 90% of pairs of objects (i.e., r = 0.9). Complete
solvability is achieved by adding to this core of the set
of low�informative motifs, each of which provides
solvability to the relatively small number of pairs of
objects.
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One can find particular interest in the study of the
solvability of such subsets of the irreducible sets of
motifs, which consist of motifs with a maximum full�
ness (zα = 1). Calculations were carried out on the sat�
isfactoriness of the condition for solvability r(Kz = 1, Pr),
Kz = 1 = {κα, T(α) = 1, zα = 1} for terms t1 and t2, using
irreducible sets of motifs, built for various mask sys�
tems in different sizes of the studied samples of prece�
dents (Tables 2 and 3).

The experimental results summarized in the tables
show that many motifs with a maximum fullness
ensure 99–100% satisfactoriness of the condition for
solvability. Both the sample size of the precedents and
the parameters of the mask system have a significant
impact on the satisfactoriness (2.3). The r(Kz = 1, Pr)
values increase to 1.0 when the size of the set of prece�
dents is increased and when the extension of the masks

is reduced. It is clear that the use of mask systems 
with n ≈ m and m = 3, for 99% satisfactoriness of the
condition for solvability, it is sufficient to use a set of

precedents, including not more than 10% of .

7. CONCLUSIONS

In this work, the development of the formalism to
study the local solvability of the genome annotation
problem was carried out. It is shown that the ordering
of the set of the motifs via heuristic evaluation of infor�
mativeness allows effective reduction of the set of the
motifs without the loss of solvability. The designed for�
malism allowed us to experiment to find the irreduc�
ible sets of the most informative motifs, and to estab�
lish the most appropriate sizes of the set of the prece�
dents and the optimal parameters of the mask systems.
Long�term directions of further investigations are for�
mulated: a theoretic�set justification of the evaluations
of informativeness and combinatorial evaluations of
values of D. Finding the irreducible sets of the most

Mn
m

c
tj

informative motifs is essential for the next phase of this
study—the synthesis of algorithms in terms of the
algebraic approach to pattern recognition.
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